Name: $\qquad$
Operations with Numbers in Scientific Notation Date: $\qquad$ Period: $\qquad$

Focus Standard: 8.EE.A. $3 \quad$| Use numbers expressed in the form of a single digit times an integer power of |
| :--- |
|  |
|  |
|  |
|  |
| times as much one is than the other. For example, estimate the population of |
| the United States as $3 \times 10^{8}$ and the population of the world as $7 \times 10^{9}$, and |
| determine that the world population is more than 20 times larger. |

## Student Outcomes

- Students practice operations with numbers expressed in scientific notation and standard notation.

Simplify the following problems, leave your answer in scientific notation.

1. $2 \times 10^{3}-1.9 \times 10^{2}$
2. $\quad 6.2 \times 10^{5}+9.7 \times 10^{1}$
 planet. About how many ants are there in the world?

Example 2: A certain social media company processes about 990 billion likes per year. If the company has approximately $\mathbf{8 . 9} . \mathbf{1 0}^{8}$ users of the social media, about how many likes is each user responsible for per year? Write your answer in scientific and standard notation.

## Classwork

## Exercise 1

The speed of light is $300,000,000$ meters per second. The sun is approximately $1.5 \times 10^{11}$ meters from Earth. How many seconds does it take for sunlight to reach Earth?

## Exercise 2

The mass of the moon is about $7.3 \times 10^{22} \mathrm{~kg}$. It would take approximately $26,000,000$ moons to equal the mass of the sun. Determine the mass of the sun.

## Exercise 3

The mass of Earth is $5.9 \times 10^{24} \mathrm{~kg}$. The mass of Pluto is $13,000,000,000,000,000,000,000 \mathrm{~kg}$. Compared to Pluto, how much greater is Earth's mass than Pluto's mass?

## Exercise 4

Using the information in Exercises 2 and 3, find the combined mass of the moon, Earth, and Pluto.

## Exercise 5

How many combined moon, Earth, and Pluto masses (i.e., the answer to Exercise 4) are needed to equal the mass of the sun (i.e., the answer to Exercise 2)?

## Problem Set

1. The sun produces $3.8 \times 10^{27}$ joules of energy per second. How much energy is produced in a year? (Note: a year is approximately $31,000,000$ seconds).
2. On average, Mercury is about $57,000,000 \mathrm{~km}$ from the sun, whereas Neptune is about $4.5 \times 10^{9} \mathrm{~km}$ from the sun. What is the difference between Mercury's and Neptune's distances from the sun?
3. The mass of Earth is approximately $5.9 \times 10^{24} \mathrm{~kg}$, and the mass of Venus is approximately $4.9 \times 10^{24} \mathrm{~kg}$.
a. Find their combined mass.
b. Given that the mass of the sun is approximately $1.9 \times 10^{30} \mathrm{~kg}$, how many Venuses and Earths would it take to equal the mass of the sun?
